Copied to
clipboard

G = C5214M4(2)  order 400 = 24·52

4th semidirect product of C52 and M4(2) acting via M4(2)/C22=C4

metabelian, supersoluble, monomial

Aliases: C102.8C4, C5214M4(2), (C2×C10).8F5, C525C86C2, C10.26(C2×F5), C53(C22.F5), C22.(C52⋊C4), C526C4.10C4, C526C4.25C22, C2.6(C2×C52⋊C4), (C5×C10).39(C2×C4), (C2×C526C4).11C2, SmallGroup(400,161)

Series: Derived Chief Lower central Upper central

C1C5×C10 — C5214M4(2)
C1C5C52C5×C10C526C4C525C8 — C5214M4(2)
C52C5×C10 — C5214M4(2)
C1C2C22

Generators and relations for C5214M4(2)
 G = < a,b,c,d | a5=b5=c8=d2=1, ab=ba, cac-1=a2, ad=da, cbc-1=b3, bd=db, dcd=c5 >

Subgroups: 316 in 56 conjugacy classes, 18 normal (10 characteristic)
C1, C2, C2, C4, C22, C5, C5, C8, C2×C4, C10, C10, M4(2), Dic5, C2×C10, C2×C10, C52, C5⋊C8, C2×Dic5, C5×C10, C5×C10, C22.F5, C526C4, C102, C525C8, C2×C526C4, C5214M4(2)
Quotients: C1, C2, C4, C22, C2×C4, M4(2), F5, C2×F5, C22.F5, C52⋊C4, C2×C52⋊C4, C5214M4(2)

Smallest permutation representation of C5214M4(2)
On 40 points
Generators in S40
(1 37 10 26 18)(2 11 19 38 27)(3 20 28 12 39)(4 29 40 21 13)(5 33 14 30 22)(6 15 23 34 31)(7 24 32 16 35)(8 25 36 17 9)
(1 26 37 18 10)(2 19 27 11 38)(3 12 20 39 28)(4 40 13 29 21)(5 30 33 22 14)(6 23 31 15 34)(7 16 24 35 32)(8 36 9 25 17)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)
(2 6)(4 8)(9 13)(11 15)(17 21)(19 23)(25 29)(27 31)(34 38)(36 40)

G:=sub<Sym(40)| (1,37,10,26,18)(2,11,19,38,27)(3,20,28,12,39)(4,29,40,21,13)(5,33,14,30,22)(6,15,23,34,31)(7,24,32,16,35)(8,25,36,17,9), (1,26,37,18,10)(2,19,27,11,38)(3,12,20,39,28)(4,40,13,29,21)(5,30,33,22,14)(6,23,31,15,34)(7,16,24,35,32)(8,36,9,25,17), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40), (2,6)(4,8)(9,13)(11,15)(17,21)(19,23)(25,29)(27,31)(34,38)(36,40)>;

G:=Group( (1,37,10,26,18)(2,11,19,38,27)(3,20,28,12,39)(4,29,40,21,13)(5,33,14,30,22)(6,15,23,34,31)(7,24,32,16,35)(8,25,36,17,9), (1,26,37,18,10)(2,19,27,11,38)(3,12,20,39,28)(4,40,13,29,21)(5,30,33,22,14)(6,23,31,15,34)(7,16,24,35,32)(8,36,9,25,17), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40), (2,6)(4,8)(9,13)(11,15)(17,21)(19,23)(25,29)(27,31)(34,38)(36,40) );

G=PermutationGroup([[(1,37,10,26,18),(2,11,19,38,27),(3,20,28,12,39),(4,29,40,21,13),(5,33,14,30,22),(6,15,23,34,31),(7,24,32,16,35),(8,25,36,17,9)], [(1,26,37,18,10),(2,19,27,11,38),(3,12,20,39,28),(4,40,13,29,21),(5,30,33,22,14),(6,23,31,15,34),(7,16,24,35,32),(8,36,9,25,17)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40)], [(2,6),(4,8),(9,13),(11,15),(17,21),(19,23),(25,29),(27,31),(34,38),(36,40)]])

34 conjugacy classes

class 1 2A2B4A4B4C5A···5F8A8B8C8D10A···10R
order1224445···5888810···10
size1122525504···4505050504···4

34 irreducible representations

dim111112444444
type+++++-++-
imageC1C2C2C4C4M4(2)F5C2×F5C22.F5C52⋊C4C2×C52⋊C4C5214M4(2)
kernelC5214M4(2)C525C8C2×C526C4C526C4C102C52C2×C10C10C5C22C2C1
# reps121222224448

Matrix representation of C5214M4(2) in GL6(𝔽41)

100000
010000
0034600
0034000
0000401
0000337
,
100000
010000
0040100
0033700
0000346
0000340
,
010000
3200000
000010
000001
0073500
0083400
,
100000
0400000
001000
000100
000010
000001

G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,34,34,0,0,0,0,6,0,0,0,0,0,0,0,40,33,0,0,0,0,1,7],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,33,0,0,0,0,1,7,0,0,0,0,0,0,34,34,0,0,0,0,6,0],[0,32,0,0,0,0,1,0,0,0,0,0,0,0,0,0,7,8,0,0,0,0,35,34,0,0,1,0,0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;

C5214M4(2) in GAP, Magma, Sage, TeX

C_5^2\rtimes_{14}M_4(2)
% in TeX

G:=Group("C5^2:14M4(2)");
// GroupNames label

G:=SmallGroup(400,161);
// by ID

G=gap.SmallGroup(400,161);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-5,-5,24,121,50,1444,496,5765,2897]);
// Polycyclic

G:=Group<a,b,c,d|a^5=b^5=c^8=d^2=1,a*b=b*a,c*a*c^-1=a^2,a*d=d*a,c*b*c^-1=b^3,b*d=d*b,d*c*d=c^5>;
// generators/relations

׿
×
𝔽